11.1 ANOVA à deux facteurs
Dans le cadre de l’ANOVA à un facteur, nous avions une variable réponse numérique étudiée pour différents niveaux d’une seule variable facteur à j niveaux ou modalités. Le modèle utilisé était :
\[y_{ij} = \mu + \tau_j + \epsilon_i \mathrm{\ avec\ } \epsilon \sim N(0, \sigma)\] Les \(\tau_j\) représent les variations entre la moyenne générale \(µ\) et les moyennes respectives des \(j\) sous-populations. En R, nous avons utilisé la formule suivante :
\[y \sim fact\]
avec \(y\) la variable numérique réponse et \(fact\) la variable facteur explicative unique.
Si nous prenons notre exemple des crabes L. variegatus, nous avions travaillé un peu artificiellement sur une seule variable facteur en regroupant les variables species
et sex
en une seule variable group
. Qu’en est-il si nous voulons quand même considérer les deux variables species
et sex
séparément ? c’est possible avec une ANOVA à deux facteurs. Les sections suivantes vous présentent quelques variantes possibles de cette analyse.