Document complémentaire au module 6 du cours SDD II de 2025-2026. Distribué sous licence CC BY-NC-SA 4.0.
Veuillez vous référer au cours en ligne pour les explications et les interprétations de cette analyse.
Installer un environnement R adéquat pour reproduire cette analyse.
#Configure SciViews::R for multivariate data exploration
SciViews::R("explore")
# Read the zooplankton dataset
zoo <- read("zooplankton", package = "data.io")
zoo## # A data.trame: [1,262 × 20]
## ecd area perimeter feret major minor mean mode min max std_dev range size aspect elongation compactness transparency circularity density class
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
## 1 0.770 0.465 4.45 1.32 1.16 0.509 0.363 0.036 0.004 0.908 0.231 0.904 0.837 0.437 8.50 3.38 0.0798 0.296 0.169 Poecilostomatoid
## 2 0.700 0.385 2.32 0.728 0.713 0.688 0.361 0.492 0.024 0.676 0.183 0.652 0.700 0.965 1 1.12 0.000123 0.896 0.139 Egg_round
## 3 0.815 0.521 4.15 1.33 1.11 0.598 0.308 0.032 0.008 0.696 0.204 0.688 0.854 0.538 6.10 2.63 0.0461 0.380 0.161 Calanoid
## 4 0.785 0.484 4.44 1.78 1.56 0.394 0.332 0.036 0.004 0.728 0.218 0.724 0.979 0.252 8.07 3.24 0.198 0.308 0.161 Poecilostomatoid
## 5 0.361 0.103 1.71 0.739 0.694 0.188 0.153 0.016 0.008 0.452 0.110 0.444 0.441 0.271 4.89 2.26 0.181 0.443 0.0157 Harpacticoid
## 6 0.832 0.544 5.27 1.66 1.36 0.511 0.371 0.02 0.004 0.844 0.268 0.84 0.934 0.377 10.6 4.05 0.108 0.247 0.202 Poecilostomatoid
## 7 1.23 1.20 15.7 3.92 1.37 1.11 0.217 0.012 0.004 0.784 0.214 0.78 1.24 0.810 49.7 16.5 0.00548 0.0608 0.260 Calanoid
## 8 0.620 0.302 3.98 1.19 1.04 0.370 0.316 0.012 0.004 0.756 0.246 0.752 0.704 0.356 11.1 4.19 0.120 0.239 0.0952 Poecilostomatoid
## 9 1.19 1.12 15.3 3.85 1.34 1.06 0.176 0.012 0.004 0.728 0.172 0.724 1.20 0.794 50.5 16.7 0.00666 0.0599 0.198 Calanoid
## 10 1.04 0.856 7.60 1.89 1.66 0.656 0.404 0.044 0.004 0.88 0.264 0.876 1.16 0.396 14.8 5.37 0.0987 0.186 0.346 Calanoid
## # ℹ 1,252 more rows
# Sous-ensemble des 6 premiers individus de zoo dans zoo6
zoo %>.%
sselect(., -class) %>.% # Élimination de la colonne class
head(., n = 6) ->
zoo6 # Récupération des 6 premiers individus
# Calcul de la matrice de distance euclidienne
zoo6_dist <- dissimilarity(zoo6, method = "euclidean")
zoo6_dist## Dissimilarity matrix with metric: euclidean
## labels 1 2 3 4 5
## 1 1
## 2 2 8.219
## 3 3 2.565 5.732
## 4 4 0.858 7.881 2.222
## 5 5 4.848 4.295 3.012 4.615
## 6 6 2.427 10.620 4.923 2.848 7.177
# Sous-enseble de zoo (individus 13 à 18)
zoo %>.%
select(., -class) %>.% # Élimination de la colonne class
slice(., 13:18) -> # Récupération des lignes 13 à 18
zoo6
# Matrice de dissimilarité sur données standardisées
zoo6 %>.%
dissimilarity(., method = "euclidean", scale = TRUE) ->
zoo6std_dist
# Dendrogramme
zoo6std_dist %>.%
cluster(.) ->
zoo6std_clust # Calcul du dendrogramme
chart(zoo6std_clust) +
ylab("Hauteur")## [1] Egg_round Poecilostomatoid Poecilostomatoid Decapod Calanoid Appendicularian
## 17 Levels: Annelid Appendicularian Calanoid Chaetognath Cirriped Cladoceran Cnidarian Cyclopoid Decapod Egg_elongated Egg_round Fish Gastropod ... Protist
# Coupure du dendrogramme à 8 (2 groupes)
chart(zoo6std_clust) +
geom_dendroline(h = 8, color = "red")# Coupure du dendrogramme à 5,8 (3 groupes)
chart(zoo6std_clust) +
geom_dendroline(h = 5.8, color = "red")## --[dendrogram w/ 2 branches and 6 members at h = 9.45]
## |--[dendrogram w/ 2 branches and 2 members at h = 5.63]
## | |--leaf 1
## | `--leaf 6
## `--[dendrogram w/ 2 branches and 4 members at h = 6.16]
## |--leaf 4
## `--[dendrogram w/ 2 branches and 3 members at h = 4.17]
## |--leaf 3
## `--[dendrogram w/ 2 branches and 2 members at h = 2.38]
## |--leaf 2
## `--leaf 5
## [1] 1 2 2 2 2 1
## [1] 1 2 2 3 2 4
# Ajout du regroupement dans zoo6
zoo6g <- augment(data = zoo6, zoo6std_clust, h = 7.5)
names(zoo6g) # Nom des variables dans ce tableau## [1] "ecd" "area" "perimeter" "feret" "major" "minor" "mean" "mode" "min" "max" "std_dev"
## [12] "range" "size" "aspect" "elongation" "compactness" "transparency" "circularity" "density" ".fitted"
# Nous transformons ces groupes en variable facteur
zoo6g$group <- factor(zoo6g$.fitted)
# Graphique des deux variables en utilisant la couleur en fonction des groupes CAH
chart(data = zoo6g, area ~ circularity %col=% group) +
geom_point()# Dendrogramme avec liens centroïdes
zoo6std_dist %>.%
cluster(., method = "centroid") %>.%
chart(.)# Dendrogramme sur le jeu de données complet zoo
zoo %>.%
sselect(., -class) %>.% # Élimination de la colonne class
# Matrice de dissimilarité sur données standardisées
dissimilarity(., method = "euclidean", scale = TRUE) %>.%
# CAH Ward D2
cluster(., method = "ward.D2") -> # CAH avec Ward D2
zoo_clust
# Dendrogramme horizontal et sans labels (plus lisible si beaucoup d'items)
chart$horizontal(zoo_clust, labels = FALSE) +
geom_dendroline(h = 70, color = "red") + # Séparation en 3 groupes
ylab("Hauteur")# Ajout des groupes dans zoo
augment(data = zoo, zoo_clust, h = 70) %>.%
smutate(., group = as.factor(.fitted)) ->
zoog
# Nuage de points avec mise en évidence des groupes par la couleur
chart(data = zoog, compactness ~ ecd %col=% group) +
geom_point() +
coord_trans(x = "log10", y = "log10") # Axes en log10## cah
## classe 1 2 3
## Annelid 31 13 6
## Appendicularian 0 36 0
## Calanoid 9 237 42
## Chaetognath 0 17 34
## Cirriped 1 21 0
## Cladoceran 47 3 0
## Cnidarian 3 5 14
## Cyclopoid 0 50 0
## Decapod 121 5 0
## Egg_elongated 2 48 0
## Egg_round 44 0 5
## Fish 4 46 0
## Gastropod 48 2 0
## Harpacticoid 0 39 0
## Malacostracan 27 66 28
## Poecilostomatoid 20 136 2
## Protist 0 50 0
# Dialect SciViews::R avec l'extension d'exploration de données multivariées
SciViews::R("explore")
# Jeu de données zooplankton
zoo <- read("zooplankton", package = "data.io")
zoo## # A data.trame: [1,262 × 20]
## ecd area perimeter feret major minor mean mode min max std_dev range size aspect elongation compactness transparency circularity density class
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
## 1 0.770 0.465 4.45 1.32 1.16 0.509 0.363 0.036 0.004 0.908 0.231 0.904 0.837 0.437 8.50 3.38 0.0798 0.296 0.169 Poecilostomatoid
## 2 0.700 0.385 2.32 0.728 0.713 0.688 0.361 0.492 0.024 0.676 0.183 0.652 0.700 0.965 1 1.12 0.000123 0.896 0.139 Egg_round
## 3 0.815 0.521 4.15 1.33 1.11 0.598 0.308 0.032 0.008 0.696 0.204 0.688 0.854 0.538 6.10 2.63 0.0461 0.380 0.161 Calanoid
## 4 0.785 0.484 4.44 1.78 1.56 0.394 0.332 0.036 0.004 0.728 0.218 0.724 0.979 0.252 8.07 3.24 0.198 0.308 0.161 Poecilostomatoid
## 5 0.361 0.103 1.71 0.739 0.694 0.188 0.153 0.016 0.008 0.452 0.110 0.444 0.441 0.271 4.89 2.26 0.181 0.443 0.0157 Harpacticoid
## 6 0.832 0.544 5.27 1.66 1.36 0.511 0.371 0.02 0.004 0.844 0.268 0.84 0.934 0.377 10.6 4.05 0.108 0.247 0.202 Poecilostomatoid
## 7 1.23 1.20 15.7 3.92 1.37 1.11 0.217 0.012 0.004 0.784 0.214 0.78 1.24 0.810 49.7 16.5 0.00548 0.0608 0.260 Calanoid
## 8 0.620 0.302 3.98 1.19 1.04 0.370 0.316 0.012 0.004 0.756 0.246 0.752 0.704 0.356 11.1 4.19 0.120 0.239 0.0952 Poecilostomatoid
## 9 1.19 1.12 15.3 3.85 1.34 1.06 0.176 0.012 0.004 0.728 0.172 0.724 1.20 0.794 50.5 16.7 0.00666 0.0599 0.198 Calanoid
## 10 1.04 0.856 7.60 1.89 1.66 0.656 0.404 0.044 0.004 0.88 0.264 0.876 1.16 0.396 14.8 5.37 0.0987 0.186 0.346 Calanoid
## # ℹ 1,252 more rows
# Initialisation du générateur de nombres psuedo-aléatoires
set.seed(38)
# Individus 13 à 18 uniquement
zoo %>.%
select(., -class) %>.% # Élimination de la colonne class
slice(., 13:18) -> # Récupération des lignes 13 à 18
zoo6
# K-moyennes, ne pas oublier de standardiser avec scale()
zoo6_kmn <- k_means(scale(zoo6), k = 2)
zoo6_kmn## K-means clustering with 2 clusters of sizes 3, 3
##
## Cluster means:
## ecd area perimeter feret major minor mean mode min max std_dev range size aspect elongation
## 1 0.8513216 0.8392524 0.8799568 0.7696708 0.6691858 0.7425983 0.5437486 0.3144358 -0.5201565 0.6542561 0.7043179 0.6597191 0.8271838 0.06931258 0.7375994
## 2 -0.8513216 -0.8392524 -0.8799568 -0.7696708 -0.6691858 -0.7425983 -0.5437486 -0.3144358 0.5201565 -0.6542561 -0.7043179 -0.6597191 -0.8271838 -0.06931258 -0.7375994
## compactness transparency circularity density
## 1 0.7373144 -0.4355018 -0.5926864 0.7253086
## 2 -0.7373144 0.4355018 0.5926864 -0.7253086
##
## Clustering vector:
## [1] 2 1 2 1 1 2
##
## Within cluster sum of squares by cluster:
## [1] 14.32167 28.69886
## (between_SS / total_SS = 54.7 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size" "iter" "ifault" "data"
## [1] 3 3
## # A tibble: 1 × 4
## totss tot.withinss betweenss iter
## <dbl> <dbl> <dbl> <int>
## 1 95 43.0 52.0 1
# Profil de la somme des carrés intragroupes en fonction de k
profile_k(scale(zoo6)) # ou zoo6_kmn$data# Récupération des groupes K-moyennes dans le jeu de données
augment(zoo6_kmn, zoo6) %>.%
srename(., cluster = .cluster) ->
zoo6b
names(zoo6b)## [1] "ecd" "area" "perimeter" "feret" "major" "minor" "mean" "mode" "min" "max" "std_dev"
## [12] "range" "size" "aspect" "elongation" "compactness" "transparency" "circularity" "density" "cluster"
## [1] 2 1 2 1 1 2
## Levels: 1 2
## [1] "factor"
# Centres des groupes K-moyennes
zoo6_centers <- tidy(zoo6_kmn, col.names = names(zoo6))
zoo6_centers## # A tibble: 2 × 21
## ecd area perimeter feret major minor mean mode min max std_dev range size aspect elongation compactness transparency circularity density withinss
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.851 0.839 0.880 0.770 0.669 0.743 0.544 0.314 -0.520 0.654 0.704 0.660 3 0.0693 0.738 0.737 -0.436 -0.593 0.725 14.3
## 2 -0.851 -0.839 -0.880 -0.770 -0.669 -0.743 -0.544 -0.314 0.520 -0.654 -0.704 -0.660 3 -0.0693 -0.738 -0.737 0.436 0.593 -0.725 28.7
## # ℹ 1 more variable: cluster <fct>
# Graphique des K-moyennes
kmn_chart <- chart(zoo6_kmn, choices = c("circularity", "area"),
alpha = 0.8, c.size = 5, c.shape = 17)
kmn_chart# Meilleurs labels des axes
kmn_chart +
labs(x = "Circularité standardisée", y = "Aire standardisée")# Données standardisées + classe pour les individus de 13 à 18 de zoo
zoo6std <- scale(zoo6)
zoo6std$class <- zoo$class[13:18]
# Graphique annoté des classes
kmn_chart +
labs(x = "Circularité standardisée", y = "Aire standardisée") +
ggrepel::geom_text_repel(data = zoo6std, aes(label = class))# Initialisation du générateur pseudo-aléatoire
set.seed(9768)
# K-moyennes
k_means(zoo6, k = 2, nstart = 50) # 50 positions de départ différentes## K-means clustering with 2 clusters of sizes 3, 3
##
## Cluster means:
## ecd area perimeter feret major minor mean mode min max std_dev range size aspect elongation compactness
## 1 0.6292647 0.3188667 3.224133 1.159200 1.096433 0.4023333 0.1871667 0.1026667 0.01066667 0.5400000 0.1166667 0.5293333 0.7493833 0.4753843 6.333315 2.727708
## 2 1.1926500 1.1279667 10.346667 2.201133 1.677067 0.8596333 0.3217333 0.3533333 0.00400000 0.8986667 0.2620000 0.8946667 1.2683500 0.5149422 23.046713 7.987806
## transparency circularity density
## 1 0.14732060 0.4900333 0.06943333
## 2 0.06173831 0.1357000 0.37630000
##
## Clustering vector:
## [1] 1 2 1 2 2 1
##
## Within cluster sum of squares by cluster:
## [1] 54.18647 200.03837
## (between_SS / total_SS = 68.1 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size" "iter" "ifault" "data"
# Profil K sur le jeu entier zoo
zoo %>.%
sselect(., -class) %>.%
scale(.) %>.%
profile_k(., k.max = 15)# Initialisation pseudo-aléatoire
set.seed(562)
# K-moyennes sur jeu complet standardisé
sselect(zoo, -class) %>.%
scale(.) %>.%
k_means(., k = 3, nstart = 50) ->
zoo_kmn
zoo_kmn## K-means clustering with 3 clusters of sizes 511, 661, 90
##
## Cluster means:
## ecd area perimeter feret major minor mean mode min max std_dev range size aspect
## 1 -0.2517071 -0.1819975 -0.41913500 -0.42842705 -0.2767871 -0.15229969 0.7646541 0.3099542 0.5011815 0.8338167 0.8004033 0.8284225 -0.2808581 0.10273406
## 2 -0.1702276 -0.1483124 -0.01053525 -0.05604782 -0.1944370 -0.08840095 -0.5364261 -0.2654678 -0.3404820 -0.6855013 -0.5263938 -0.6824966 -0.1926062 0.07589772
## 3 2.6793643 2.1226136 2.45713094 2.84415368 2.9995675 1.51397969 -0.4017846 0.1898626 -0.3449459 0.3004002 -0.6784421 0.3089594 3.0092357 -1.14072772
## elongation compactness transparency circularity density
## 1 -0.5798725 -0.5782663 -0.23720081 0.5630402 -0.03959989
## 2 0.2925602 0.2911364 -0.07155467 -0.3378906 -0.23950775
## 3 1.1436952 1.1450326 1.87230280 -0.7151979 1.98389075
##
## Clustering vector:
## [1] 1 1 1 1 2 1 2 1 2 1 3 2 1 1 1 1 2 2 2 2 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 2 2 2 1 2 1 2 2 1 1 2 1 1 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1
## [83] 1 1 1 2 2 1 2 1 1 2 1 3 1 1 1 2 1 2 1 1 1 1 2 1 2 2 2 2 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 3 3 3 2 2 1 1 1 1 2 1 3 2 2 1 2 2 1 2 2
## [165] 1 1 1 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 1 2 1 1 1 1 2 1 2 2 2 1 2 2 1 1 2 1 2 2 2 2
## [247] 2 2 1 2 1 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2 3 3 3 1 1 3 1 2 2 1 2 1 1 3 1 1 3 1 1 3 2 3 2 2 1 1 1 1 1 2 3 1 2 1 2 2 1 2 2 1 3 1 2 2 2 1 3 3 3 1 3 2 2 2 2 1 2 2 1 2
## [329] 2 2 2 1 1 2 2 2 1 2 1 2 2 1 1 2 1 1 2 2 2 1 2 2 1 1 2 2 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1
## [411] 1 2 2 1 1 1 1 1 1 2 2 2 2 2 1 2 2 1 1 1 2 2 3 1 1 2 1 2 1 1 2 3 2 2 2 2 2 1 2 1 2 1 3 2 1 2 2 2 2 1 1 1 2 1 2 1 1 2 1 1 1 2 2 2 2 2 2 1 2 1 1 1 1 2 2 1 1 2 1 2 2 2
## [493] 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 1 3 3 2 3 2 3 1 2 2 1 3 1 2 3 3 1 1 2 2 1 2 2 3 2 2 2 1 1 2 1 2 1 2 1 2 2 2 1 3 2 1 1 3 1 2 2 1 3 2 3 1 2 1 2 2 2 3 2 2 1 2 1 2 2 2 2
## [575] 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 3 1 3 2 2 1 2 3 3 1 1 2 2 1 2 2 2 1 2 2 2 2 2 1 2 1 1 1 1 2 1 1 1 1 2 2 3 2 2 1 2 2 2 3 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2
## [657] 1 1 2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 3 3 2 1 1 1 2 1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 1 3 1 2 3 2 1 2 1 2 2 3 2 2 1 1 3 2 1 2 2 2 2 3 1 1 2 3 1 2 2 1 3 2 2 3 1 3
## [739] 2 2 2 2 2 2 2 2 3 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 1 1 2 1 2 2 2 1 2 2 1 2 1 2 2 2 3 1 2 2 2 2 2 2 3 2 2 2 2 1 3 2 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 1 2 1 3 2 2 2 2 1 2
## [821] 2 1 1 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 1 1 1 1 2 2 2 1 1 3 3 2 1 1 2 1 1 1 2 3 2 2 1 2 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 1 2 2 1 2 2 1 1 2 2 2
## [903] 2 2 2 1 2 2 1 2 2 2 2 1 1 2 2 2 1 2 3 1 1 2 3 1 1 2 2 1 2 2 2 2 3 2 2 1 3 2 2 1 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 3 1 1 2 2 2 1 2 2 1 1
## [985] 1 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2
## [ reached getOption("max.print") -- omitted 262 entries ]
##
## Within cluster sum of squares by cluster:
## [1] 4967.123 5371.726 4498.727
## (between_SS / total_SS = 38.1 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size" "iter" "ifault" "data"
# Récupération des groupes K-moyennes dans le jeu de données zoo
augment(zoo_kmn, zoo) %>.%
srename(., cluster = .cluster) ->
zoob
# Graphique K-moyennes ECD vs Compacité
chart(zoo_kmn, choices = c("ecd", "compactness"), alpha = 0.2) +
labs(x = "ECD standardisée", y = "Compacité standardisée") +
stat_ellipse()##
## 1 2 3
## Annelid 39 8 3
## Appendicularian 1 34 1
## Calanoid 30 257 1
## Chaetognath 0 6 45
## Cirriped 3 19 0
## Cladoceran 50 0 0
## Cnidarian 1 9 12
## Cyclopoid 0 50 0
## Decapod 126 0 0
## Egg_elongated 9 41 0
## Egg_round 37 9 3
## Fish 43 7 0
## Gastropod 50 0 0
## Harpacticoid 0 39 0
## Malacostracan 49 47 25
## Poecilostomatoid 73 85 0
## Protist 0 50 0
# Dialecte SciViews::R avec module d'exploration multivariée
SciViews::R("explore")
# Jeu de données BCI
bci <- read("BCI", package = "vegan")
# Sous-échantillon de 5 parcelles
set.seed(2003)
bci_sub <- sample_n(bci, 5)
# Exploration partielle des données (15 premières espèces)
skimr::skim(bci_sub[, 1:15])| Name | bci_sub[, 1:15] |
| Number of rows | 5 |
| Number of columns | 15 |
| _______________________ | |
| Column type frequency: | |
| numeric | 15 |
| ________________________ | |
| Group variables | None |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Abarema.macradenia | 0 | 1 | 0.0 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
| Vachellia.melanoceras | 0 | 1 | 0.4 | 0.89 | 0 | 0 | 0 | 0 | 2 | ▇▁▁▁▂ |
| Acalypha.diversifolia | 0 | 1 | 0.0 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
| Acalypha.macrostachya | 0 | 1 | 0.2 | 0.45 | 0 | 0 | 0 | 0 | 1 | ▇▁▁▁▂ |
| Adelia.triloba | 0 | 1 | 0.2 | 0.45 | 0 | 0 | 0 | 0 | 1 | ▇▁▁▁▂ |
| Aegiphila.panamensis | 0 | 1 | 0.4 | 0.55 | 0 | 0 | 0 | 1 | 1 | ▇▁▁▁▅ |
| Alchornea.costaricensis | 0 | 1 | 2.2 | 0.45 | 2 | 2 | 2 | 2 | 3 | ▇▁▁▁▂ |
| Alchornea.latifolia | 0 | 1 | 0.2 | 0.45 | 0 | 0 | 0 | 0 | 1 | ▇▁▁▁▂ |
| Alibertia.edulis | 0 | 1 | 0.0 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
| Allophylus.psilospermus | 0 | 1 | 0.4 | 0.55 | 0 | 0 | 0 | 1 | 1 | ▇▁▁▁▅ |
| Alseis.blackiana | 0 | 1 | 15.8 | 5.40 | 12 | 12 | 14 | 16 | 25 | ▇▂▁▁▂ |
| Amaioua.corymbosa | 0 | 1 | 0.0 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
| Anacardium.excelsum | 0 | 1 | 1.4 | 1.34 | 0 | 0 | 2 | 2 | 3 | ▇▁▁▇▃ |
| Andira.inermis | 0 | 1 | 0.6 | 0.55 | 0 | 0 | 1 | 1 | 1 | ▅▁▁▁▇ |
| Annona.spraguei | 0 | 1 | 0.6 | 0.89 | 0 | 0 | 0 | 1 | 2 | ▇▁▂▁▂ |
## [1] 85 91 99 85 93
## [1] 3.693896 3.913725 3.969925 3.776575 4.018412
## [1] 85 91 99 85 93
## [1] 0.8314621 0.8676229 0.8639438 0.8500724 0.8865579
# Indice de diversité de Simpson
bci_sub_e <- vegan::diversity(bci_sub, index = "simpson")
bci_sub_e## [1] 0.9499296 0.9676412 0.9686058 0.9627557 0.9746293
## Dissimilarity matrix with metric: jaccard
## labels 1 2 3 4
## 1 1
## 2 2 0.483
## 3 3 0.492 0.480
## 4 4 0.455 0.533 0.528
## 5 5 0.517 0.551 0.545 0.425
if (exists("assignment2"))
assignment2("B06Ga_open_data", part = "I",
url = "https://github.com/BioDataScience-Course/B06Ga_open_data",
course.ids = c(
'S-BIOG-061' = !"B06Ga_{YY}M_open_data"),
course.urls = c(
'S-BIOG-061' = !"{assign_url$B06Ga_open_data}"),
course.starts = c(
'S-BIOG-061' = !"{class2_start(mod, 'B06')}"),
course.ends = c(
'S-BIOG-061' = !"{n4_end(mod, 'B10')}"),
term = "Q2", level = 4, n = 4,
toc = "Étude de données ouvertes choisies librement (I)")